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Abstract: The aim of this study was to investigate pre-service primary school teachers’ (PPSTs) 

pedagogical content knowledge (PCK) on quadrilaterals. In this study, the PCK components of 

knowledge of understanding students (KUS) and knowledge of instructional strategies (KIS) were 

used. The participants of the study consisted of 83 PPSTs studying at the primary education 

department of a university in Turkey. The illustrative case study method was used, while six 

scenarios were used as the data collection tool developed by researchers. The data obtained from 

open-ended scenarios were analyzed by using the summative content analysis technique. As a 

result of the study, it was observed that the KUS of the PPSTs about quadrilaterals was not on the 

desired level. Moreover, the KIS of the PPSTs was also not on the desired level. As a result of the 

study, it was observed that, in the process of eliminating the mistakes of students, the PPSTs 

preferred mainly the "Direct Instructional" method, which is based on traditional approaches and 

centers the teacher. 

Key words: pedagogical content knowledge, quadrilaterals, teacher education, pre-service teacher, 
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1. Introduction 

One of the fundamental aims of mathematics education is to understand the relationships between 

mathematics and the world. With geometry education, it is aimed that students understand geometric 

concepts in the best way and relate them to daily life (Ministry of National Education [MoNE], 2017). 

Geometry, which is composed of the words Geo and Metry, means the measure of the land. Humanity 

started to use geometry by the moment it started to make sense of the physical environment around it 

(Baki, 2014). It is believed that the first example if this started by the need of Egyptians to measure 

their fields based on retraction of flood water near the River Nile (Ball, 1960).  

Geometry plays a role in understanding different topics of mathematics and serves as a bridge between 

various disciplines, such as art and architecture, and mathematics. According to the National Council 

of Teachers of Mathematics NCTM (2000), geometry contributes to development of the reasoning 

and problem-solving skills of students. Geometry also helps students understand abstract concepts 

(Duatepe, 2000). Therefore, from the very first years of education, teaching of geometry 

has remained a priority (Baykul, 2002). 

Although geometry is highly important in mathematics education, students on all levels have many 

learning difficulties and misconceptions in this field of learning (Özerem, 2012). Quadrilaterals are 

particularly among the geometry concepts where students experience difficulty in learning (Okazaki & 

Fujita, 2007). Students experience problems in defining quadrilaterals, calculating their perimeter and 

areas (Özerem, 2012), determining models suitable for definitions of quadrilaterals (Mack, 2007), as 

well as establishing relationships among different quadrilaterals (Gal & Lew, 2008) and among the 

properties of a shape (Özerem, 2012). 

Some of the reasons why students experience learning difficulties related to quadrilaterals are the 

complex relationships of quadrilaterals with each other (Fujita & Jones, 2006; Okazaki & Fujita, 

2007). In the geometry literature, both inclusive and exclusive definitions of quadrilaterals are 

included (Usiskin & Griffin, 2008). For example, the trapezoid has an inclusive definition as "a 
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quadrilateral with at least a pair of sides parallel," or an exclusive definition as "a quadrilateral with 

only a pair of sides parallel" (Öztoprakçı & Çakıroğlu, 2013). According to the exclusive definition of 

the trapezoid, only the shape numbered 4 below is a trapezoid, while all the shapes (square, rectangle, 

parallelogram) have the characteristics of a trapezoid if the inclusive definition is taken into 

consideration.  

1  2  3  4 

Figure 1. Trapezoid models 

Therefore, teachers decide whether to use an inclusive or exclusive definition while teaching 

quadrilaterals in the classroom. Teachers should use inclusive definitions if students have reached 

cognitive maturity to understand the relationship between geometric concepts (Öztoprakçı & 

Çakıroğlu, 2013). Moreover, according to van Hiele's geometric thinking model, students need to 

reach level 2 (informal deduction) to establish a relationship between geometric shapes (Burger & 

Shaughnessy, 1986). On Level 0 (Visualization), individuals focus on the visual properties of 

geometric shapes, while on Level 1 (Analysis), they can analyze the properties and components of 

geometric shapes (Crowley, 1987). In this context, mathematics teachers have to teach quadrilaterals 

by considering the levels of cognitive development and geometric thinking of students. Otherwise, 

students will have difficulties in learning the concepts of quadrilaterals, and as a result, they will make 

mistakes. Therefore, teachers are also among the sources of the mistakes of students regarding 

quadrilaterals. Vocational inadequacy of the teacher is considered to be among the most significant 

reasons for the mistakes made by students in the geometry learning process (Confrey, 1990; Lim, 

2011; Luneta, 2015). Additionally, several studies in the relevant literature (Ball, 1991; Baumert et al., 

2010; Choy, Wong, Lim, & Chong, 2013; Even, Tirosh, & Robinson, 1993; Kahan, Cooper, & Bethea, 

2003; Stewart, 2013) have revealed a positive relationship between the professional adequacy of the 

teacher and student success. Baumert et al. (2010) found a positive relationship between teachers’ 

PCK and student achievement as a result of their findings on the structural equation model. In other 

words, teachers have the most significant responsibility in teaching students the definitions, properties 

and algorithms of quadrilaterals correctly.  

Many studies have been conducted to explain the professional capacities of teachers, and the PCK 

model proposed by Shulman (1987) pioneered such studies (Depaepe, Verschaffel, & Kelchtermans, 

2013). Shulman (1986, 1987) defined PCK as a type of knowledge that emerges as a result of the 

interaction between content knowledge and pedagogical knowledge. PCK involves determination and 

elimination of the mistakes and misconceptions of students, methods and techniques towards teaching 

concepts in the most effective form and different representations of concepts (Marks, 1990). In the 

relevant literature, there have been studies towards determining the PCK levels of pre-service teachers 

on several concepts (Ball, 1988; Şahin, Gökkurt, & Soylu, 2016; O'Hanlon, 2010; Tirosh, 2000). 

However, it is seen that studies on determining the PCK levels of form teachers or pre-service teachers 

on geometry, especially in relation to quadrilaterals, are fewer in comparison to those on other 

concepts (Depaepe et al., 2013; Stahnke, Schueler, & Roesken-Winter, 2016). In this context, this 

study aims to examine the PCK of PPSTs about quadrilaterals in terms of student mistakes. The 

following research questions were posed to guide the study: 

1) On what level can PPSTs identify (recognize) students’ mistakes about quadrilaterals? (KUS) 

2) On what level can PPSTs propose solutions to eliminate students’ mistakes about 

quadrilaterals? (KIS) 

3) What are the instructional strategies that PPSTs often prefer in the process of resolving 

students’ mistakes about quadrilaterals? (KIS) 
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2. Theoretical framework 

2.1. Students’ mistakes and misconceptions about quadrilaterals 

Although geometry is highly important in mathematics education, students from early childhood to the 

university level have been reported to have many learning difficulties and misconceptions in this 

learning field (Clements & Sarama, 2000; Fujita & Jones, 2006; Hasegawa, 1997; Jung & Conderman, 

2017; Mack, 2007; Monaghan, 2000). Quadrilaterals are particularly among the concepts where 

students experience difficulties in the process of learning geometry (Fujita & Jones, 2006; Okazaki & 

Fujita,2007). 

Students experience problems in defining quadrilaterals, calculating their perimeter and areas 

(Özerem, 2012), determining models suitable for the definitions of quadrilaterals (Erez & Yerushalmy; 

2006; Mack, 2007), as well as establishing relationships among quadrilaterals (Gal & Lew, 2008) and 

among the properties of a shape (Özerem, 2012). Mack (2007) stated that third grade students could 

not name the rotated form of squares and rectangles. Erez and Yerushalmy (2006) reported that fifth 

grade students thought, when rectangles are rotated, their properties change. 

Gal and Lew (2008) stated that, although high school students with low level of success knew about 

the prototype form of a parallelogram, they were not aware that a square, a rectangle and an equilateral 

quadrangle are also parallelograms. Okazaki and Fujita (2007) expressed that even high school 

students are not aware that a square is also a rectangle and an equilateral quadrangle. Monaghan 

(2000) asked students aged from 11 to 16 what types of differences exist among various quadrilaterals. 

Some students failed to explain the differences among quadrilaterals. For example, these students 

stated that a square and a rectangle has common properties, but they could not explain their different 

properties. 

Özerem (2012) concluded that some seventh-grade students multiplied the base by height and divided 

the result by two while calculating the area of a parallelogram. In the study by Huang and Witz (2013), 

some fourth-grade students confused the perimeter and the area of a rectangle. Kospentaris, Spyrou 

and Lappas (2011) stated that many high school and university students confuse congruence with area 

equivalence. Additionally, students believe that, when the visual properties of a quadrilateral change, 

its area also changes (Pitta-Pantazi & Christou, 2009). In other words, according to the students, when 

we transform a parallelogram into a rectangle, its area changes. 

The reasons for the misconceptions of students regarding quadrilaterals may be listed to include the 

limited experiences of students related to concepts (Erez & Yerushalmy, 2006; Hasegawa,1997; 

Mooney, Briggs, Hansen, McCullouch, & Fletcher, 2018), limited representation of concepts in 

textbooks and curricular materials (Monaghan, 2000), incomplete subject content knowledge of 

teachers regarding concepts (Hasegawa,1997; Monaghan, 2000) and the complicated structure of 

quadrilaterals (Fujita & Jones, 2006; Okazaki & Fujita,2007). Monaghan (2000) stated that mistakes 

made about quadrilaterals originate from that expressions in curricular materials are usually 

prototypes. Hasegawa (1997) emphasized that general usage of prototype models and non-usage of 

definitions, examples and materials suitable for the student’s level by the teacher were effective on 

students’ mistakes related to quadrilaterals. Erez & Yerushalmy (2006) highlighted that the existing 

knowledge of students related to quadrilaterals is effective. The most significant factor in students’ 

focus on prototype models of geometric shapes may be that teachers and textbooks usually prioritize 

prototype shape examples, and comprehensive concept definitions are not sufficiently prioritized 

(Fujita & Jones, 2006; Okazaki & Fujita, 2007). 

2.2. Pedagogical content knowledge: Knowledge for teaching 

In the early 1980s, chaos in the education system in America formed the basis for many studies 

(Carlsen, 1999). Many studies have shown that teachers play a critical role in making the education 

system more qualified (Ball, Thames, & Phelps, 2008; Cochran, De Ruiter, & Kin, 1993; Grossmann, 

1990; Marks, 1990; Tamir, 1988). In this context, many teacher knowledge base models have been 

developed. One of the most important of models was developed by Shulman (1987). Shulman (1987) 

named problems regarding teacher education as “missing paradigm” and proposed the concept of PCK 
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as a recommendation of a solution to these problems (Depaepe et al., 2013). Shulman (1987) described 

a unique combination of knowledge bases that a teacher should possess, with his PCK model that 

emphasizes the importance of teacher education. Shulman (1987) noted that both content knowledge 

and pedagogical knowledge are essential for PCK, and being able to use these at the same time is a 

critical aspect of a teacher. Shulman (1987) considered PCK as knowledge that distinguishes a teacher 

and a domain expert. One of the most prominent criticisms of the PCK model by Shulman (1987) was 

that it is not discipline-specific, and it is not based on experimental foundations (Ball et al., 2008). As 

a result of this, several models have been developed to reveal the professional capacities that teachers 

of language, mathematics and science should possess (Ball et al., 2008; Grossman, 1990; Fennema & 

Franke, 1992; Magnusson, Krajcik, & Borko, 1999; Schoenfeld, 1998). These models that were 

developed were constructed over the theoretical framework of the Shulman (1987) model (Carrillo-

Yañez et al., 2018). 

 

Figure 2. Shulman (1987) PCK model 

Shulman (1987) included seven categories (Figure 2) in professional knowledge in teaching including 

PCK. Shulman (1987) noted that PCK is made up of the subcomponents of KUS and knowledge of 

instructional strategies. KUS is defined as the knowledge of teachers or pre-service teachers of 

students' preliminary knowledge about the learning concept, learning difficulties, mistakes, 

misconceptions and the reasons for these (Shulman, 1987). Additionally, the PCK component 

expressed as KUS by Shulman (1987) was named differently in other PCK models. This component of 

PCK was named in the literature as knowledge of students' understanding (Grossman, 1990), 

knowledge of content and students (Ball et al., 2008), knowledge of students' understanding of science 

(Magnusson et al., 1999), knowledge of students' understanding in science (Park & Oliver, 2008), 

students’ understanding of the subject matter (Marks, 1990), knowledge of students’ thinking (An, 

Kulm, & Wu, 2004) and knowledge of students (Cochran et al., 1993). KIS, which is the second 

component of Shulman’s (1986) PCK was defined as the teacher’s teaching method and technical 

knowledge, which are used in transferring content knowledge to students, eliminating the 

misconceptions of students and increasing the success of students (Ball et al., 2008; Cochran, et al., 

1993; Magnusson et al., 1999). In other words, KIS is the knowledge that ensures teaching a concept 

to students in the most effective way. 

3. Method 

In this study, the qualitative research method of illustrative case study was used to examine the PCK 

of PPSTs on quadrilaterals in terms of student mistakes.  
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Illustrative case studies are descriptive. They utilize one or two instances to show what a 

situation is like. This helps interpret other data, especially when there is reason to believe 

that readers know too little about a program. These case studies serve to make the 

unfamiliar familiar and give readers a common language about the topic. The chosen site 

should be typical of important variations and contain a small number of cases to sustain 

readers’ interest (Davey, 1991, p.2). 

The PCK of PPSTs in terms of quadrilaterals was descriptively discussed. The cases of this study 

included determining-defining student mistakes, producing solution recommendations for eliminating 

these mistakes and instructional methods. 

3. 1. Participants  

The participants of this study consisted of 83 PPSTs who were selected by the convenience sampling 

method (McMillian & Schumacher, 2010). The PPSTs were in the final year of their undergraduate 

education at the faculty of education at a university in Turkey. In the convenience sampling method, a 

group of subjects may be selected on the basis of accessibility and expedience (McMillian & 

Schumacher, 2010). In this context, the researchers carried out the study with pre-service teachers that 

were receiving education at the faculty of education where they work. 

In Turkey, PPSTs complete their undergraduate education in eight terms. PPSTs, who participated in 

this study, took the courses "Basic Mathematics 1", "Basic Mathematics 2", "Mathematics Teaching 

1" and "Mathematics Teaching 2" for mathematics teaching. Furthermore, during the last year of their 

undergraduate education, PPSTs are trained in primary schools within the scope of "School 

Experience" and "Teaching Practice" courses. During the internship training, PPSTs are given the 

opportunity to monitor all the educational activities carried out in schools and give lessons to students. 

In this study, the data were collected from the PPSTs at the end of the eighth semester of their 

undergraduate education. In other words, the data were collected after the PPSTs completed all the 

courses they needed to teach mathematics. Moreover, in the process of data collection, the real names 

of the PPSTs were not used in the text due to the ethical issues. In this context, the PPSTs who 

participated in this study were given codes from PT1 to PT83. 

3. 2. Measure 

In this study, the standardized open-ended interview method was used as a data collection tool. In this 

method, during the interview, pre-determined questions are asked to avoid participants' bias and 

subjectivity. This also increases transferability, by which studies that use standardized open-ended 

interviews may be replicated by other researchers. This method is usually preferred in cases when it is 

necessary to interview multiple people (Patton, 1987). In this context, an interview form consisting of 

six open-ended scenarios were applied to the PPSTs. The scenarios were prepared as an artificial 

storyline related to the investigated situation and intended to attract the attention of the participants. 

Therefore, through this scenario, the researcher could investigate a lot of matters at the same time with 

regard to the participants' PCK (Bütün, 2005).  

At the first stage of the development process of the scenarios used in the study, the researchers created 

ten scenarios using their own experiences and the related literature (Ball, 1988; McCoy, 2016; Stecher 

et al., 2003). The scenarios that were developed were then examined by two mathematics education 

experts and a language expert to ensure their content validity and linguistic validity. Based on the 

expert opinions, one of the questions that measured similar skills was selected. After these 

adjustments, the final version of the interview form included six open-ended scenarios (App.1). Table 

1 summarizes the geometry concepts that were used in the scenarios and how these scenarios were 

obtained. Moreover, the study also included which van Hiele geometry thinking level the geometric 

skills included in each scenario corresponded to. It is an issue which is open to criticism that, although 

the theoretical framework of this study emphasizes the field of learning geometry, it included 

scenarios related to perimeter and area measurements for quadrilaterals. NCTM (2000) includes 

geometry and measurement as two different content standards. In contrast, in the mathematics 

curriculum in Turkey where the study was carried out (MoNE, 2017), geometry and measurement are 

given under one content standard.  
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Two standard questions were used in each scenario to measure the PCK of the PPSTs. These questions 

were as follows: "Consider the situation in this scenario. In this case given to you, are the answers of 

the students correct? If they are correct, explain why they are correct. (KUS)" and "If you think that 

the answers of the students are wrong, explain why they are wrong (KUS). How would you interfere 

with the student if you were in this situation? What would you do to eliminate this mistake?" (KIS). If 

the PPSTs believed that the students had not made mistakes in the given scenario, they were expected 

to answer the first question. The PPSTs who answered this question also needed to explain why the 

answer of the student was correct. The PPSTs who answered the second question should identify and 

describe the student’s mistake in the given scenario and explain how to eliminate this mistake.  

Table 1. Information about scenarios 

Scenario Concept Source Explanation 

Scenario 1 

(Level 1) 

Definition of 

square 

Developed by 

researchers. 

The definition made by the teacher in this 

scenario is not only valid for a square. In 

addition to a square, this definition also 

expresses many geometric shapes such as an 

rhombus, regular pentagon and regular 

hexagon. 

Scenario 2 

(Level 2) 

Parallelogram 

examples 

Developed by 

researchers 

The students selected only the prototype model 

of a parallelogram. The students did not know 

that a square and a rectangle are also 

parallelograms. 

Scenario 3 

(Level 2) 

 

Area of 

quadrilaterals 

Developed by 

researchers 

The students generalized the formula that they 

used for calculating the areas of a square and a 

rectangle to other quadrilaterals (deltoid, 

equilateral quadrangle). 

Scenario 4 

(Level 2) 

 

Area concept 

(unit square) 

The relevant literature 

(Stecher et al., 2003) 

was used  

The students made mistakes in calculating 

areas with 2x2 squares. The students firstly 

multiplied the side lengths, and they multiplied 

the result with 2 instead of 4.  

Scenario 5 

(Level 2) 

 

Relation between 

perimeter and 

area 

The relevant literature 

(Ball, 1988) was used. 

The students thought that quadrilaterals with a 

larger perimeter would have larger areas. 

Scenario 6 

(Level 2) 

 

Perimeter and 

area of non-

prototype 

quadrilaterals 

The relevant literature 

(McCoy, 2016) was 

used. 

The students had difficulty in calculating the 

area of a non-prototype quadrilateral. 

3. 3. Data collection procedure 

The data of this study were collected in the last semester of the four-year undergraduate education of 

the preservice teachers. At the first stage of the data collection process, the authors informed the 

PPSTs regarding the objective of the study and ethical principles. In this information, it was explained 

that the collected data would only be used for the purpose of this study and would not be shared with 

anyone. The data were collected in the classroom environment, and the scenarios were presented to the 

participants as printed copies. In each scenario, a sufficient space was allocated for the preservice 

teachers to answer the questions in the scenario. Without any time limitation, the participants were 

allowed to comfortably express their views. The participants took around 60-120 min to complete their 

responses to the scenarios. The also responded to the scenarios individually and without interacting 

with each other. 

3. 4. Data analysis 

The data obtained from the open-ended scenarios were analyzed through the summative content 

analysis technique. Summative content analysis enables us to categorize the answers of PPSTs 

according to the themes or categories already defined by the researchers (Hsieh & Shannon, 2005). In 
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this study, themes were created for identification of mistake, instructional methods and elimination of 

mistake for each scenario. After then the codes for each theme were created, the themes and codes 

generated from the findings of the study were presented in frequency-percentage tables. To make the 

data analysis process more comprehensible, the data analysis frameworks formed for identification of 

mistake, elimination of mistake and instructional methods for each category are given in the tables 

below. These tables where the data analysis frameworks are summarized include themes for each 

category, explanations of these themes and examples of the participants’ responses in these themes. 

Table 2. Themes for identification of mistakes (first scenario) 

Themes Description Exemplary answer  

Correct 

identification of 

the mistake 

A completely correct 

identification and description of 

the mistake. 

PT16: If the teacher had stated in the definition that a 

square has 4 sides, and these 4 sides are equal to 

each other, the students would not select the shape 

number 2. Additionally, if it had been given in the 

definition that the sides are perpendicular to each 

other, they would not select the shape number 3. 

Partial 

identification of 

the mistake 

Use of incomplete statements 

while describing the mistake. 

PT11: The students made mistakes as the teacher 

used the expression “all sides are equal”. While 

making a definition, the teacher did not state how 

many sides a square has. 

Failure to 

identify the 

mistake 

A completely incorrect 

description of the mistake 

PT1: The shapes numbered 1 and 4 are squares, 

while those numbered 2 and 3 are not. 

No answer Unanswered --------------------------------------- 

No mistake Stating that there is no mistake in 

the scenario 

PT29: The students answered correctly.  

PT16 correctly explained the mistake by stating that it originated from the teacher, and emphasis was 

not made in the definition on 4 sides and angle characteristics. While PT11 emphasized the number of 

sides of a square, as they did not mention the angle characteristics, it was assumed that they described 

the mistake as partially correct. As PT1 used a mathematically incorrect statement by stating that the 

shape number 4 which was a rectangle was a square, their answer was put under the code “failure to 

identify the mistake”. PT29 stated that, in the given scenario, the students answered correctly, and they 

did not make any mistake. 

Table 3. Themes for elimination of mistakes (fourth scenario) 

Themes Description Exemplary answer  

Correct 

elimination 

A completely correct 

instructional and 

mathematical proposal. 

PT62’ s answer to fourth scenario (Table 7) 

Partially 

correct 

elimination 

A proposal that contains 

incomplete statements in 

instructional terms or 

mathematically 

PT45: I would first have them find the areas of the 2x2 unit 

squares. Afterwards, I would ask them to multiply the answer 

they found with how many 2x2 unit squares there are. 

Failure to 

eliminate 

A completely incorrect or 

irrelevant proposal. 

PT11: The student found the perimeter of the shape by 

multiplying with 2. They should be taught that calculation of 

perimeter and calculation of area are different. 

No answer Unanswered ------------------------- 
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PT62 produced a correct solution recommendation by making both instructionally and mathematically 

necessary explanations. PT45 followed an instructionally and mathematically correct approach 

towards elimination of the mistake. However, as PT45 did not state how these calculations should be 

mathematically made and what the correct result was, their response was considered to be in the 

category of “partially correct elimination”. PT11 stated that the result that the student found was the 

perimeter of the shape, and thus, the relationship between area and perimeter should be taught. 

However, the perimeter of the shape was not 24 units but 28 units. Therefore, PT11 brought an 

incorrect solution recommendation as they could not describe the mistake correctly.  

Table 4. Themes for instructional methods 

Themes Description Exemplary answer  

Direct instruction These were the cases where 

preservice teachers directly 

expressed the definitions or 

properties of concepts. 

PT8: …To eliminate this mistake, while defining a 

square, the student should be taught that “it has 4 

sides, side lengths are equal to each other, and the 

sides are perpendicular to each other. (Scenario 1) 

Expository 

teaching 

These were teacher-centered 

approaches, where the preservice 

teachers tried to offer meaningful 

learning by using organizers. 

PT18: I would firstly give the definition of a square to 

the students. I would then show square-shaped 

objects around them. I would also show them non-

square shapes and explain that they are named as 

triangle, rectangle, parallelogram. (Scenario 1) 

Discovery 

learning 

These were student-centered 

approaches that the preservice 

teachers used to have children 

discover the properties of 

concepts with the help of guiding 

questions. 

PT60: I would firstly ask the students to calculate the 

length of each side. Afterwards, I would have them 

calculate the area of the rectangle. This way, the 

students would be aware of the mistake they have 

made. (Scenario 4) 

Manipulatives These were the situations where 

the preservice teachers used 

concrete materials. 

PT63: I would bring materials in the shape of 

parallelograms to the classroom. With the help of 

these models, I would have them understand that only 

the shape numbered 3 is not a parallelogram. 

(Scenario 2) 

Question-Answer 

method 

These were cases where the 

preservice teachers only directed 

questions to the students. 

PT24: I would ask the students about the properties 

of quadrilaterals. I would ask them what the shaped 

numbered 2 and 5 are. (Scenario 3) 

Other methods Tutor, demonstration, daily life 

example, activities. 

PT41: The teacher should provide the student with 

tutor support. (Scenario 3) 

No answer These were the situations where 

the preservice teacher could not 

propose a solution. 

  

PT8 used the method of “direct instruction” as they stated that definition should be given directly, 

PT18 used “expository teaching” as they used explanatory and comparative organizers, and PT60 used 

“discovery learning” as they allowed students to discover and fix their mistakes. The mistakes were 

aimed to be fixed by PT63 by using “tangible materials”, by PT24 by asking questions to students and 

by PT41 by assigning tutors. 

In this study, the PPSTs’ written answers to all scenarios were analyzed by two researchers 

independently from each other for the reliability of the study using the formula 

( ) by Miles and Huberman (1994). The consistency between the coders was 

calculated as 0.91. So, it may be stated that the reliability of the study was highly acceptable. 

Additionally, the codes where the researchers had a disagreement were reviewed by the two 

researchers, and these disagreements were overcome. 
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4. Findings 

This section includes findings derived from the PPSTs’ answers to each scenario.  

4.1. Identification of mistakes 

Table 5. Results regarding identification of mistakes 

 Correct 

identification 

of the mistake 

Partial 

identification 

of the mistake 

Failure to 

identify the 

mistake 

 

No answer 

 

No mistake 

 f % f % f % f % f % 

S1 29 34.93 48 57.83 2 2.4 2 2.4 2 2.4 

S2 22 26.5 19 22.89 3 3.61 - - 39 46.98 

S3 19 22.89 28 33.73 10 12.04 7 8.43 19 22.89 

S4 24 28.91 41 49.39 8 9.63 5 6.02 5 6.02 

S5 - - 6 7.22 4 4.81 14 16.86 59 71.08 

S6 13 15.66 39 46.98 1 1.2 11 13.25 19 22.89 

As seen in Table 5, a large part of the participants stated that there was no mistake in the second 

(46.98%) or fifth (71.08%) scenario. Additionally, 22.89% of the participants stated there was no 

mistake in the third and sixth scenarios. As in the case of many preservice teachers who stated that 

there was no mistake in the second scenario, PT55 and PT66 focused on the prototype form of a 

parallelogram. However, both a square and a rectangle satisfy the properties of a parallelogram. PT11 

stated that there was no mistake in the third scenario by thinking that the area formula of the rectangle 

is valid for all quadrilaterals. PT52 and PT73 stated that there is a linear relationship between 

perimeter and area. For example, although the perimeters of a rectangle with side lengths of 2 cm and 

6 cm and a square with side lengths of 4 are the same, their areas are different. Therefore, it may be 

stated that the inadequacies in the quadrilateral-related knowledge of the preservice teachers prevented 

them from noticing student mistakes. 

PT55: The students’ answer is correct. A parallelogram is a shape of whose sides are parallel 

to each other. Shape 1 is a square, and shape 4 is a rectangle. (S2) 

PT66: The student’s answer is correct, because the sides of a parallelogram do not cross each 

other perpendicularly as in shapes 1 and 4. (S2) 

PT11: The student gave the correct answer. The area is calculated by multiplying the lengths of 

two sides.  (S3) 

PT52: The answer of the student is correct because in a geometric shape the perimeter and the 

area are directly proportional. (S5) 

PT73: It is correct. As the perimeter increases, the area also increases. (S5) 

While the large majority of the participants were aware that there were mistakes in the given 

scenarios, a very small part of them were able to explain the mistakes in a mathematically accurate 

way. While no participant could correctly identify the mistake in the fifth scenario, very few were able 

to do so in the other scenarios. In the first scenario, PT4 correctly described the mistake by stating that 

the students selected the shapes that were suitable for the incorrect definition made by the teacher. In 

the second scenario, PT18 stated that the students focused on the prototype form of a parallelogram, 

and this is why they did not select the square or the rectangle. In the third scenario, PT9 identified the 

mistake correctly by explaining that the student generalized the area formula for a rectangle or a 

square to all quadrilaterals. In the fourth scenario, PT67 made a correct explanation by stating that 

multiplication should involve the area of a unit square rather than the length of one side. In the sixth 
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scenario, PT45 correctly described the points the student could not comprehend while calculating the 

area of the given shape. 

PT4: As Teacher Reyhan made the definition that a shape with equal sides is called a square, 

the students made mistakes. Therefore, the students selected the shapes numbered 1, 2 and 3 

whose all sides were equal. (S1) 

PT18: Since the students usually encounter shape 3, they did not regard the other shapes as 

parallelograms, although shapes 1 and 4 are also parallelograms. (S2) 

PT9: Tarik though that the area formula of a rectangle is valid for all quadrilaterals. This is 

because this formula results in correct answers regarding squares and rectangles. (S3) 

PT67: The student found the length of the long side as 4 and the short side as 3 units. There are 

12 unit squares in the shape. The student multiplied 12 and the unit square's side length, but he 

had to multiply 12 and the unit square's area. (S4) 

PT45: It can be calculated. The student should have drawn a 4x4 square in a way to include the 

given shape within. He might not have thought that, afterwards, he needed to subtract the areas 

of the triangular pieces outside the shape from the area of the square. (S6) 

A large proportion of the participants who noticed that there were mistakes in the first (57.83%), 

fourth (49.39%) and sixth (46.98%) scenarios were able to determine the mistakes only partially 

correctly. A very small proportion of the participants completely failed to identify the mistake. In the 

first scenario, PT2 stated that, if the teacher used the expression quadrilateral while making a 

definition, the student would not make a mistake. On the other hand, an equilateral quadrangle’s all 

sides are also equal, but it is not necessarily a square. For this reason, in the first scenario, PT2 

partially correctly identified the student’s mistake. PT50 made a partially correct discovery by not 

noticing that the students multiplied 12 with one side length instead of the area of the unit squares. In 

the sixth scenario, PT39 stated that the student could reach the solution by using their abstract thinking 

skill without any tools. However, as the participant did not explain what they meant by abstract 

operations, their response was accepted as incomplete. In the third scenario, PT78 explained the 

mistake incorrectly by stating that the student made a mistake because they considered the area 

formulae of a square and a rectangle to be same. PT79 identified the mistake incorrectly by giving a 

completely irrelevant answer (Figure 3). This was because PT79 gave as an example of a two-

dimensional closed shape, a rectangular prism, which is, in fact, a three-dimensional object. 

PT2: The students made mistakes as the teacher said “quadrilateral with equal sides” instead 

of “shape with equal sides”. The mistake was caused by the teacher’s expression. (S1) 

PT50: To calculate the area, the side length of each unit square should be written in cm. The 

short side is 6 cm, and the long side is 8 cm. The area will be then 6 8=48. (S4) 

PT39: The student thought that the area of the shapes could be measured with the help of a 

ruler and a goniometer. However, they could not think that it could be calculated by using a set 

of abstract mathematical operations without any tools. (S6) 

PT78: A square and a rectangle are quadrilaterals, but their area formulae are different. (S3)  

PT79: The answer is incorrect, because length does not change when a closed shape is opened. 

This is why the formula is wrong. For example, if we open this shape, the area of the shape 

turns out to be the same. (S5) 
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Figure 3.  Answer of PT79 to the fifth scenario 

4.2. Elimination of mistakes 

Table 6. Results regarding elimination of mistakes 

 Correct elimination Partially correct 

elimination 

Failure to eliminate  No answer 

 f % f % f % f % 

S1 9 10.84 41 49.39 22 26.5 11 13.25 

S2 - - 23 27.71 10 12.04 50 60.24 

S3 - - 22 26.5 16 19.27 45 54.21 

S4 7 8.43 27 32.53 18 21.68 31 37.34 

S5 - - 1 1.2 3 3.61 79 95.18 

S6 1 1.2 25 30.12 20 24.09 37 44.57 

As seen in Table 6, very few participants were able to provide the correct solution recommendations to 

eliminate the mistakes in the given scenarios. Additionally, while no participant could form a correct 

solution recommendation in the second, third and fifth scenarios, only one (1.2%) could produce a 

correct one for the sixth scenario. PT8 brought a correct solution recommendation for the first scenario 

by stating that the mistake was caused by the definition made by the teacher, and the students would 

select only the first shape as a square if the definition had been made as a square has 4 sides, and the 

sides must be perpendicular to each other. In the sixth scenario, PT57 stated that the students could 

reach a correct solution by forming a square covering the given geometrical shape and finding its area 

by subtracting the areas of the triangle pieces from the area of this new shape (Figure 4). In the fourth 

scenario, PT62 provided a solution recommendation to eliminate the mistake by having the students 

understand that the unit squares did not consist of one unit, but they consisted of 2 units, and 

explaining how they could reach the correct solution.   

PT8: Teacher Reyhan caused the students to fall into the misconception by defining the square 

as a shape with all sides equal. Therefore, the students chose all geometric shapes with equal 

side lengths. Shapes 1, 2 and 3 have equal side lengths. However, shape 2 is a triangle, and 

shape 3 is a parallelogram. When the square is defined as the shape of which four sides are 

equal and perpendicular to each other, such a situation will not occur. If the teacher had made 

the definition of the square more comprehensive, the students would have chosen only shape 1, 

and it would be the correct answer. (S1) 

PT57: This may be found by taken the spacing between two nails as one unit and surrounding 

the given shape by a rubber band. The students can find the area of the shape inside by 

subtracting the areas of the triangles from the area of the shape outside. (S6) 
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Figure 4. PT57’s drawing for scenario 6 

Table 7.  Answers of PT62 to the fourth scenario 

Participant Answer to scenario 4 Translation of Quotation 

PT62 

 

It is wrong. The area of the shape is Area 

= Short Side x Long Side 

First, we should tell the child that a side 

length of the unit square is not a unit. I 

would not use 2x2 unit squares if I were 

to teach this shape's area since the child 

cannot distinguish it right now. 

We can use 1x1 unit squares instead of 

2x2 unit squares. 

There are 4x3 = 12 units in total in the 

shape. If the area of 1 unit square is 4, I 

will explain that the area of 12 unit 

squares is 48. 

The vast majority of the participants did not produce a solution recommendation towards eliminating 

the mistake in the second, third, fourth, fifth and sixth scenarios. Most of the participants who were 

able to bring solution recommendations for eliminating the mistakes either were able to bring partially 

correct solution recommendations or completely failed to eliminate the mistake. In the first scenario, 

PT10 brought a failed solution recommendation by not explaining how a square should be defined to 

eliminate the mistake. In the second scenario, PT83 failed to produce a solution recommendation for 

eliminating the mistake, because they stated that the diagonals of a rectangle cross each other with a 

perpendicular angle. However, rectangles whose diagonals are perpendicular to each other are squares, 

and this rule is not valid for all rectangles. In the fourth scenario, PT6 stated the necessity of teaching 

students the topic of area calculation, but they did not explain how this teaching process should be 

towards eliminating the mistake in the context of this scenario. In the third scenario, PT9 showed a 

correct approach towards eliminating the mistake. However, their response was considered partially 

correct as they did not make instructional explanations regarding how to calculate areas in shapes 

other than squares and rectangles. 

PT10: I would completely and correctly teach the definition of square for the students. (S1) 

PT83: The teacher should specify that the diagonals are perpendicular in a rectangle, but not 

in a parallelogram. (S2) 

PT6: Information should be provided to the student in terms of area calculation. (S4) 
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PT9: The student generalized the formula they used in a square or a rectangle to other shapes. 

To overcome this, we need to show that the height of not every shape is a side of that shape, but 

some heights pass through the shape. (S3) 

4.3. Instructional methods 

Table 8. Results regarding the instructional methods 

Codes  S1 S2 S3 S4 S5 S6 

Discovery 

learning 

f 11 4 5 17 - 12 

% 13.25 4.81 6.02 20.48 - 14.45 

Expository 

teaching 

f 19 12 6 15 - 6 

% 22.89 14.45 7.22 18.07 - 7.22 

Direct 

instructional 

method 

f 41 11 19 17 4 18 

% 49.39 13.25 22.89 20.48 4.81 21.68 

Manipulatives f 1 2 2 3 - 10 

% 1.2 2.4 2.4 3.61 - 12.04 

Question-

answer method 

f - 2 3 - - - 

% - 2.4 3.61 - - - 

Other methods f - 2 3 - - - 

% - 2.4 3.61 - - - 

No answer f 11 50 45 31 79 37 

% 13.25 60.24 54.21 37.34 95.18 44.57 

As seen in Table 8, the participants who produced solution recommendations towards eliminating the 

mistakes in the scenarios mostly preferred the method of “direct instructional”. They also used the 

“expository teaching” and “discovery learning” methods frequently in eliminating the mistakes. The 

participants also utilized the “manipulatives” and “question-answer” methods in eliminating the 

mistakes. On the other hand, the participants did not prefer methods that are more suitable for the level 

of primary school students such as drama, analogy, educational games, digital storytelling and 

instruction with music. PT8 in the third scenario and PT20 in the fifth scenario preferred the “direct 

instructional” method by directly reminding the students of rules, formulae and relations in 

eliminating the mistakes. In the fourth scenario, PT14 led the students to reach the result step by step 

by guiding them instead of directly stating the correct answer (discovery learning). In the second 

scenario, PT43 tried to eliminate the mistake by asking the students a question that would allow them 

to notice their mistake (question-answer). With the direct quotation of PT62 (Table 7), they argued 

that it must be explained to students that the unit squares are 2x2, and so, the area of any unit square is 

4. Moreover, PT62 used the "expository teaching" strategy because they preferred to make educational 

explanations themselves to provide meaningful learning in eliminating this mistake. In the first 

scenario, PT61 stated that the mistake made by the students regarding the concept of a square could be 

eliminated with the help of three-dimensional tangible materials. 

P8: The students should be re-taught the area calculation formulae for geometric shapes. (S3). 

P20: I would tell the student that the formula they have found is not valid for all quadrilaterals. 

(S5) 

PT14: I would first have the students count the unit squares found in the long side. Afterwards, 

by emphasizing that the side length of each unit square is 2, I would have them calculate the 
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length of the long side. Similarly, I would guide them to find the length of the short side. Finally, 

the students could reach the correct result by using the area formula. (S4) 

P43: I would ask the students why they did not select the shapes numbered 1 and 4. (S2) 

PT61: …I would try to materialize it with three-dimensional models. (S1) 

5. Conclusion and discussion 

In this study, preservice primary school teachers’ PCK about quadrilaterals was examined in the 

context of intervening in children’s mistakes. In the study, six open-ended scenarios were presented to 

the preservice teachers. The answers of the preservice teachers to the open-ended scenarios were 

analyzed in the context of identifying mistakes, eliminating mistakes and instructional methods. 

5.1. Identification of mistakes 

As a result of the study, it was observed that the PPSTs had difficulties in identifying student mistakes 

about quadrilaterals. The PPSTs were partially successful in scenario 1, scenario 2, scenario 3, 

scenario 4 and scenario 6. Nonetheless, they were unsuccessful in identifying the student's mistakes in 

scenario 5, in which the perimeter-area relation in a rectangle was discussed. In other words, it was 

observed that the KUS of the PPSTs about quadrilaterals was not on the desired level. Similarly, 

studies in the literature (Even & Tirosh, 1995; Fernández, Llinares, & Valls, 2013; O'Hanlon, 2010; 

Rieche, Leuders, & Renkl, 2019; Son & Sinclair, 2010; Schleppenbach, Flevares, Sims, & Perry, 

2007; Tirosh, 2000) have shown that pre-service teachers and in-service teachers have difficulties in 

identifying student mistakes related to many mathematical concepts. Son and Sinclair (2010) stated 

that pre-service teachers experienced difficulties in explaining the mistakes of students related to 

geometry. Schleppenbach et al. (2007) reported that students in the classrooms of American and 

Chinese mathematics teachers made mistakes at similar frequencies. While the American teachers 

usually ignored the mistakes of the students, the Chinese teachers guided the students to think about 

their mistakes. Tirosh (2000) claimed that prospective elementary school teachers were unaware of the 

major sources of students' misconceptions regarding division in fractions. O'Hanlon (2010) found that 

pre-service secondary school mathematics teachers' KUS was weak. Contrary to the results of these 

studies, some studies in the literature (Chick, 2010; Gal, 2011; Gökkurt, Şahin, Erdem, Başıbüyük, & 

Soylu, 2015b) revealed that pre-service teachers’ levels of KUS are sufficient. In Chick’s (2010) 

study, the vast majority of mathematics teachers were able to recognize misconceptions about ratios. 

Gal (2011) carried out Problematic Learning Situations activities in geometry with a pre-service 

teacher. At the end of the activity, the pre-service teacher was successful in understanding and 

explaining the thoughts and misconceptions of students in geometry. Gökkurt et al. (2015b) 

determined that pre-service mathematics teachers were successful in identifying and explaining 

students' mistakes about the concept of a cone. If we evaluate the results of this study and the studies 

in the related literature together, we mat state that, for some concepts, prospective teachers are 

successful in identifying and explaining learning difficulties, but they fail in other concepts. However, 

in this study, it was observed that the PPSTs were unable to meet expectations in identifying the 

learning difficulties that students experienced with regard to quadrilaterals.  

As a result of the study, it was observed that the content knowledge of the PPSTs was inadequate with 

regard to the concepts in the scenarios in which they had difficulties in identifying the student’s 

mistakes. In other words, it may be stated that the two subcomponents of PCK, content knowledge and 

knowledge of understanding of students, are positively correlated with each other. For example, in 

Scenario 2, in which students chose only the prototype model for the parallelogram, PT55 stated that 

the answer of the students was correct. PT55 explained their statement by saying: "Shape number 1 is 

a square, and shape number 4 is a rectangle". In other words, the pre-service teacher stated that the 

square and rectangle are not examples of parallelograms. Fujita (2012) made the inclusive definitions 

of the parallelogram as “A quadrilateral which has two pairs of parallel lines.” However, when the 

definition of the parallelogram is examined, it is observed that the rhombus, rectangle and square meet 

the requirements of this definition. In other words, the rhombus, rectangle and square are also 

parallelograms. Therefore, it may be stated that the content knowledge of the pre-service teacher about 
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the geometric shapes representing a parallelogram was insufficient. For this reason, the pre-service 

teacher could not identify the mistake of the student since the pre-service teacher themselves also had 

the same misconception as the student. In fact, many studies in the related literature have revealed that 

the content knowledge of teachers and pre-service teachers plays a vital role in understanding students' 

mistakes (Ball, 1991; Blömeke, Hsieh,  Kaiser, & Schmidt, 2014; Krauss & Brunner, 2011; Pankow et 

al., 2016; Son, 2013). It was experimentally proven that content knowledge is necessary for the 

mathematics learning process of students to be fast and correct (Blömeke et al. 2014; Krauss & 

Brunner, 2011). Pankow et al. (2016) similarly determined that early-career mathematics teachers with 

strong content knowledge could detect student mistakes faster and more accurately. Son (2013) stated 

that subject content knowledge is necessary in understanding student mistakes related to 

quadrilaterals. However, they emphasized that a good level of subject content knowledge does not 

guarantee a good level of knowledge on the understanding of students. The relevant literature and the 

results of this study revealed that the content knowledge of teachers and pre-service teachers is an 

essential factor in identification, description and understanding the source of misconceptions or 

learning difficulties that students have about mathematical concepts.  

5.2. Elimination of mistakes 

As a result of the study, we saw that the PPSTs had difficulties in making precise educational 

explanations for elimination of the learning difficulties of students with regard to quadrilaterals. In 

general, the PPSTs either made inadequate instructional explanations or did not offer any solution 

recommendation. Moreover, very few PPSTs were able to make correct or partially correct 

instructional explanations for eliminating the student’s learning difficulties. In other words, the KIS of 

the PPSTs related to quadrilaterals was not on the desired level. Besides, in many studies (Ball, 1988; 

Cooper, 2009; Galant, 2013; Jakobsen, Ribeiro, & Mellone, 2014; Kleickmann et al., 2015) mentioned 

in the related literature, it has been concluded that pre-service teachers' KIS related to many 

mathematical concepts is inadequate. In this study, it was observed that the PPSTs who had difficulty 

in identifying the mistakes of students could also not produce a solution recommendation to correct 

these mistakes. Additionally, although some PPSTs could describe the mistake correctly, they could 

not produce the correct solution proposal for correcting the mistake. In other words, in order to have 

the KIS of PPSTs on the desired level, they should have enough KUS (Cooper, 2009). However, pre-

service teachers’ possession of a high level of KUS does not guarantee that their KIS will be on a 

desired level. Masduki, Suwarsono and Budiarto (2017) reported that, although high school 

mathematics teachers were successful in explaining the mistakes of students regarding equations, they 

found it difficult to produce solutions to eliminate these mistakes. Likewise, Son and Sinclair (2010) 

stated that pre-service teachers had inadequacy in producing solution recommendations to eliminate 

mistakes, although they correctly recognized the mistakes students made in geometry. Gökkurt, Şahin, 

Soylu and Doğan (2015a) stated that, although pre-service mathematics teachers have moderate KUS 

in relation to geometric objects, they have insufficient knowledge of instructional strategies. 

Considering the related literature and the results of this study, it may be stated that, for producing 

solution recommendations to correct the mistakes of students, it is important for pre-service teachers 

to understand and identify the mistakes of students, but it is not enough by itself. 

5.3. Instructional methods 

As a result of the study, it was observed that, in the process of eliminating the mistakes of students, the 

PPSTs preferred mainly the "Direct Instructional" method, which is based on traditional approaches 

and centers the teacher. As it is known, PPSTs are responsible for the education of children in the 7-11 

age range when they become teachers [MoNE, 2017]. When the Turkish mathematics curriculum is 

examined, we see that a contemporary philosophical approach has been adopted in which students are 

responsible for self-learning, discovering knowledge, questioning, problem-solving and reasoning 

[MoNE, 2017]. According to Piaget's (1936) theory of cognitive development, it is also expected from 

children in the concrete operational period to be able to discover information through concrete 

materials and various activities in the mathematics learning process (Şahin, 2012). Therefore, it may 

be stated that the PPSTs were unsuccessful in selecting and using methods-techniques that are suitable 

for both the philosophy of the Curriculum and the cognitive development levels of students. Similarly, 
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Şahin et al. (2016) and Güler and Çelik (2019) stated that pre-service mathematics teachers used 

methods of making students memorize the rules to correct the students’ mistakes related to numbers. 

However, Yavuz Mumcu (2017) found that pre-service teachers offered valid methods to correct the 

conceptual mistakes of students with regard to fractions, but they were generally inadequate in using 

these methods as appropriately for the situation. 

6. Limitations and recommendations 

This study investigated the PCK of PPSTs regarding quadrilaterals in the context of intervention with 

student mistakes. This study was limited to PPSTs enrolled at the faculty of education at one 

university. Additionally, the data of the study were obtained with the help of six open-ended scenarios. 

As a result of the study, it was seen that the PPSTs who were about to complete their undergraduate 

education were not on a desired level in terms of identifying possible student mistakes and producing 

solution recommendations towards eliminating these mistakes. In this sense, learning environments 

that will allow pre-service teachers to encounter student mistakes throughout their undergraduate 

education and provide them with opportunities to intervene with these mistakes should be designed. 

For this, in the “Mathematics Teaching I-II" courses, which are the only courses taken by PPSTs 

regarding teaching of mathematics, different instruments and methods such as case study, digital 

storytelling and vignette could be utilized. This study determined the PCK levels of PPSTs only 

regarding quadrilaterals. Further studies may investigate PCK levels or developments towards 

different geometry concepts such as angles, triangles, prisms, pyramids or symmetry. 
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Appendix 1: Scenarios Used in This Study  

 

N Scenarios Used 

1 Teacher Reyhan was teaching the students the square shape. At first, after checking the students' preliminary 

knowledge about the square shape, she showed the students several square models. Later, Reyhan defined the 

square as "the shape with all sides equal." She then gave her students the following shapes and asked them to 

choose the square ones. The students stated that figures 1, 2 and 3 were square. 

1  2  3  4 

 

2 Teacher Hasan gives to the students, who are taught the parallelogram for the first time, the following 

parallelogram models to check their preliminary knowledge. He wants the students to determine which of the 

shapes are parallelograms. The students say that only shape 3 is a parallelogram. 

1  2  3  4 

 

3 After teaching the subject of the area of quadrilaterals, teacher Tolga asked his students to draw different 

quadrilaterals with the same area. Tarık among the students drew the following shapes. 

 

4 You are teaching your students the area relation in a rectangle. You have noticed that many students can 

calculate the areas of rectangular shapes. Then, to be sure that your students can calculate the areas of 

rectangular shapes, you gave them the following shape which consists of 2x2 unit squares. Caner among the 

students said: "My teacher, the area of this shape is 24 because the long side is 4 and the short side is three 

units, and I get 12 out of here. Multiplying 12 and 2, we obtain 24. This will ultimately give us the area of the 

shape. "  

  

5 One day, a student came very excitedly to you, and between you, the following dialogue took place. 

Student: My teacher, I think I found a new relation. I want to share this relation with you. 

You: Really? 

Student: Yes, my teacher. You have never mentioned this relation before. I found it myself. 

You: Ok, will you share the relation with me? 

Student: My teacher, if the perimeter of a closed shape increases, its area also increases. So, a shape with a more 

extended perimeter has a larger area. 
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